University of Cambridge Integro-diierential Equations and Generalized Hypergeometric Functions Integro-diierential Equations and Generalized Hypergeometric Functions Are Neither Zero nor a Negative In- Teger, and 2 0; 2) There Exist Smooth Functions and Such That the Generalized Hypergeometric Function
نویسنده
چکیده
This paper is concerned with the integro-diierential equations y 0 (t) = ay(t) + Z 1 0 y(qt) d(q) + Z 1 0 y 0 (qt) d(q); t 0 and y(t) + Z 1 0 y(qt) d(q) + Z 1 0 y 0 (qt) d(q) = 0; t 0; where a is a complex constant, while and are complex-valued functions of bounded variation on 0; 1]. The main motivation for the study of these two equations is that for every integers B + 1 A 0 and real constants e ii t) satisses the rst equation when A B and the second equation when A = B + 1. The rst equation also includes as a special case the well-known pantograph equation and many of its generalizations. The main goals of our study are well-posedness of initial value problems, Dirichlet and Dirichlet{Taylor expansions and asymptotic behaviour of the solutions.
منابع مشابه
Finding All Hypergeometric Solutions of Linear Diierential Equations Finding All Hypergeometric Solutions of Linear Diierential Equations Finding All Hypergeometric Solutions of Linear Diierential Equations
Hypergeometric sequences are such that the quotient of two successive terms is a xed rational function of the index. We give a generalization of M. Petkov sek's algorithm to nd all hypergeometric sequence solutions of linear recurrences, and we describe a program to nd all hypergeometric functions that solve a linear diierential equation. Solutions hyperg eom etriques des equations dii erentiel...
متن کاملAutoconvolution equations and generalized Mittag-Leffler functions
This article is devoted to study of the autoconvolution equations and generalized Mittag-Leffler functions. These types of equations are given in terms of the Laplace transform convolution of a function with itself. We state new classes of the autoconvolution equations of the first kind and show that the generalized Mittag-Leffler functions are solutions of these types of equations. In view of ...
متن کاملA Subclass of Analytic Functions Associated with Hypergeometric Functions
In the present paper, we have established sufficient conditions for Gaus-sian hypergeometric functions to be in certain subclass of analytic univalent functions in the unit disc $mathcal{U}$. Furthermore, we investigate several mapping properties of Hohlov linear operator for this subclass and also examined an integral operator acting on hypergeometric functions.
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملDiscrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients
This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...
متن کامل